Neural Networks

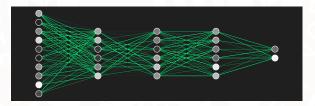
Problems H

Hugging Face Demo

Conclusion

Logistic Regression and Neural Networks Pytorch

Dana Golden, Lilia Maliar



Data Science and Machine Learning - November 30, 2024

-

Problems

Hugging Face Demo

Conclusion

Presentation Outline

- Introduction and Background
- **2** Logistic Regression
- **3** Neural Networks
- 4 Problems
- 5 Hugging Face Demo
- 6 Conclusion

Neural Networks

Problems H

Hugging Face Demo

Conclusion

Continuous vs. Discrete Data

- What makes these two forms of data different?
- Why is this an important difference?
- What assumptions of models get violated with discrete data
- What models work with discrete data?

Neural Networks

Problems Hu

Hugging Face Demo

Conclusion

The Impact of Neural Networks

- Neural networks revolutionized the field of machine learning
- At their heart, neural networks simply are an easier way to fit a function with massive amounts of data
- Turns out to be a useful tasks for games, computer vision, NLP, chatbots, etc.

Neural Networks

Problems Hu

Hugging Face Demo

Conclusion

Neural Networks in Economics

• Neural networks have been slow to be adapted into economics. Why?

Neural Networks

Problems Hu

Hugging Face Demo

Conclusion

- Neural networks have been slow to be adapted into economics. Why?
- The causality problem in neural networks is not unsolvable. Work is being done to create explainable neural networks.

Neural Networks

Problems Hu

Hugging Face Demo

Conclusion

- Neural networks have been slow to be adapted into economics. Why?
- The causality problem in neural networks is not unsolvable. Work is being done to create explainable neural networks.
- Currently neural networks are most used for labelling data and handling unstructured data

Conclusion

- Neural networks have been slow to be adapted into economics. Why?
- The causality problem in neural networks is not unsolvable. Work is being done to create explainable neural networks.
- Currently neural networks are most used for labelling data and handling unstructured data
- Neural networks are also incredibly common in dynamic fields such as macro and IO

Conclusion

- Neural networks have been slow to be adapted into economics. Why?
- The causality problem in neural networks is not unsolvable. Work is being done to create explainable neural networks.
- Currently neural networks are most used for labelling data and handling unstructured data
- Neural networks are also incredibly common in dynamic fields such as macro and IO
- More applications are coming!

Introduction and Background $_{\bigcirc \bigcirc \bigcirc }$

Logistic Regression

Neural Networks

Problems H

Hugging Face Demo

Conclusion

Logistic Vs. Linear Regression

• Why can't you use a linear regression for a discrete variable?

Introduction and Background $_{\bigcirc \bigcirc \bigcirc }$

Logistic Regression

Neural Networks

Problems H

Hugging Face Demo

Conclusion

Logistic Vs. Linear Regression

- Why can't you use a linear regression for a discrete variable?
- Logistic regression y values are naturally bounded above by 1

Logistic Regression

Neural Networks

Problems H

Hugging Face Demo

Conclusion

Logistic Vs. Linear Regression

- Why can't you use a linear regression for a discrete variable?
- Logistic regression y values are naturally bounded above by 1
- With logistic regression, effect sizes change as output increases

Logistic Regression

Neural Networks

Problems H

Hugging Face Demo

Conclusion

Logistic Vs. Linear Regression

- Why can't you use a linear regression for a discrete variable?
- Logistic regression y values are naturally bounded above by 1
- With logistic regression, effect sizes change as output increases
- What else differentiates them?

Logistic Regression

Neural Networks

Problems

Hugging Face Demo

Conclusion

(1)

(2)

Sigmoid Function

$$\sigma(ec{z_i}) = rac{1}{1+e^{-z_j}} \ z_j = X_ieta$$

• When will this equal one half?

Logistic Regression

Neural Networks

Problems

Hugging Face Demo

Conclusion

Softmax Function

$$\sigma(\vec{z_i}) = \frac{e^{z_i}}{\sum_{j=1}^{J} e^{z_j}}$$

$$z_j = X_i \beta$$
(3)
(4)

• Why this function? What interesting properties does it have that make it useful?

Neural Networks

Problems

Hugging Face Demo

Conclusion

Logistic Regression steps

- Randomly initialize weights
- Take dot product and find predictions
- Take log likelihood
- Determine gradient of loglikelihood function
- Take step for weights in direction of gradient
- Repeat until convergence or hit max steps

Neural Networks

Problems Huggi

Hugging Face Demo Conclusion

Logistic Regression log-likelihood Equation

Likelihood function is:

$$L(\beta|X,Y) = \prod_{i=1}^{n} P(Y_i = 1|x_i)^{y_i} (1 - P(Y_i = 1|x_i))^{1-y_i}$$
(5)

Loglikelihood is:

$$I(\beta) = \sum_{i=1}^{N} y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$$
(6)

Normalize log-loss is:

$$J(\beta) = \frac{-1}{N} \sum_{i=1}^{N} y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$$
(7)

Introduction and Background $_{\bigcirc \bigcirc \bigcirc }$

Logistic Regression

Neural Networks

Problems Hug

Hugging Face Demo

Conclusion

Finding Gradient of Log-likelihood

How should we go about this?

Introduction and Background $_{\rm OOO}$

Logistic Regression

Neural Networks

Problems Hug

Hugging Face Demo

Conclusion

(8)

Finding Gradient of Log-likelihood

• How should we go about this?

$$\frac{\partial J}{\partial \beta_j} = -(y_i - \hat{y})x_j$$

Data Science and Machine Learning

Logistic Regression

Neural Networks

Problems

Hugging Face Demo

Conclusion

Probit vs. Logit

- Probit is a more generalized for of logit
- Probit assumes a normal standard error while logit assumes a logistic standard error
- Logit is preferable for data science because it has a closed form solution

Neural Networks

Problems H

Hugging Face Demo

Conclusion

Overview of Neural Networks

- At their basic level neural networks consist of a sequence of linear regressions followed by non-linear activation functions
- Multiple layers, special functions, and non-linearities allow logistic regressions to learn

Logistic Regression

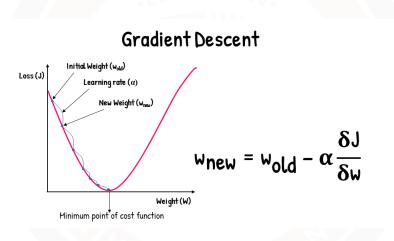
Neural Networks

Problems

Hugging Face Demo

Conclusion

Review of Gradient Descent



Data Science and Machine Learning

Neural Networks

Problems

Hugging Face Demo

Conclusion

Forward propagation

- Forward propogation moves data from the input to the output in the neural network
- The most basic form of forward propogation is a linear regression
- Other types of layers can be added. e.g. Convolutional layer, recurrent layer

Neural Networks

Problems

Hugging Face Demo

Conclusion

Value of multiple layers

- Each node can learn one particular feature of the dataset
- Different layers can learn different types of information
- Successive layers in the neural network learn combinations of different features in earlier layers to recognize more interesting patterns in data

Neural Networks

Problems

Hugging Face Demo

Conclusion

Activation Functions

- Activation functions create non-linearities between the layers
- Activation functions are what allows neural networks to learn non-linear functions
- Without them, neural networks are effectively linear regressions

Neural Networks

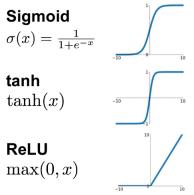
Problems

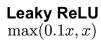
ms Hugging Face Demo

e Demo Conclusion

Activation Function Visual

Activation Functions





 $\begin{aligned} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{aligned}$

ELU $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

Neural Networks

Problems

Hugging Face Demo

Conclusion

Automatic Differentiation

- Automatic differentiation replaces manual differentiation with a network graph that automatically finds the derivative of a set of operations
- Everything is chain rule, when in doubt, chain rule

Introduction and Background $_{\rm OOO}$

Logistic Regression

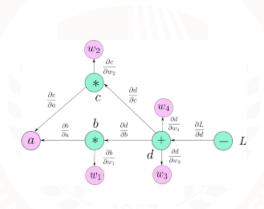
Neural Networks

Problems Hu

 $\underset{OO}{\text{Hugging Face Demo}}$

Conclusion

Automatic Differentiation Graph



Neural Networks

Problems

Hugging Face Demo

Conclusion

Backpropogation

- Backpropogation finds the derivative of the cost function with respect to each of the weights
- It allows weights and biases to be adjusted based on their impact on the cost

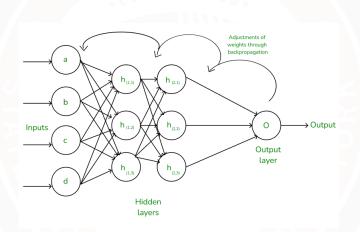
Neural Networks

Problems

Hugging Face Demo

Conclusion

Backpropogation Visual



Data Science and Machine Learning

æ

Э

Logistic Regression

Neural Networks

Problems Hugg

Hugging Face Demo

Conclusion

Logistic Regression as a one Layer Neural Network

- Logistic regression is actually a type of neural network!
- It consists of one linear layer followed by a sigmoid activation function
- Many early neural networks utilized simple multi-stage linear regressions e.g. MLPs

Neural Networks

Problems

Hugging Face Demo

Conclusion

Output of neural network

• The output of the neural network is based on the last linear layer, the final activation function, and the cost function

Neural Networks

Problems I

Hugging Face Demo

Conclusion

Output of neural network

- The output of the neural network is based on the last linear layer, the final activation function, and the cost function
- The number of output features of the last linear layer is the number of features of the input to the final activation functions

Problems

Hugging Face Demo

Conclusion

Output of neural network

- The output of the neural network is based on the last linear layer, the final activation function, and the cost function
- The number of output features of the last linear layer is the number of features of the input to the final activation functions
- Some activation functions allow continuous variables, others like softmax are discrete

Problems

Hugging Face Demo

Conclusion

Output of neural network

- The output of the neural network is based on the last linear layer, the final activation function, and the cost function
- The number of output features of the last linear layer is the number of features of the input to the final activation functions
- Some activation functions allow continuous variables, others like softmax are discrete
- Which cost function should you use for logistic regression? Continuous variables?

Neural Networks

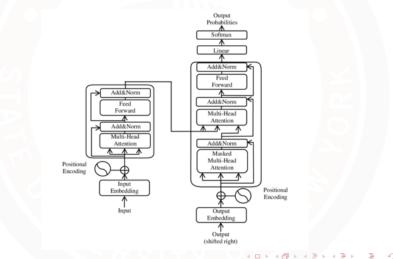
Problems F

Hugging Face Demo

Conclusion

Overivew of Transformer

• Transformers represent a major step forward in neural networks



Data Science and Machine Learning

Logistic Regressi

Neural Networks

Problems Hugg

Hugging Face Demo

Conclusion

(9)

Finding gradient of softmax function

$$s_i = \frac{e^{z_i}}{\sum_k e^{z_k}}$$

Logistic Regression

Neural Networks

Problems Huggi

Hugging Face Demo

Conclusion

Finding gradient of softmax function

$$s_{i} = \frac{e^{z_{i}}}{\sum_{k} e^{z_{k}}}$$
(9)
$$s_{i} = \frac{e^{z_{i}}}{e^{z_{i}} + \sum_{k \neq i} e^{z_{k}}}$$
(10)

Logistic Regression

Neural Networks

Problems Huggi

Hugging Face Demo

Golden. Maliar

24 / 32

Conclusion

Finding gradient of softmax function

$$s_{i} = \frac{e^{z_{i}}}{\sum_{k} e^{z_{k}}}$$
(9)
$$s_{i} = \frac{e^{z_{i}}}{e^{z_{i}} + \sum_{k \neq i} e^{z_{k}}}$$
(10)
$$\frac{s_{i}}{\partial z_{i}} = \frac{(e^{z_{i}} + \sum_{k \neq i} e^{z_{k}})e^{z_{i}} - e^{z_{i}}e^{z_{i}}}{(e^{z_{i}} + \sum_{k \neq i} e^{z_{k}})^{2}}$$
(11)

Logistic Regression

Neural Networks

Problems Huggi

Hugging Face Demo

Conclusion

Finding gradient of softmax function

$$s_{i} = \frac{e^{z_{i}}}{\sum_{k} e^{z_{k}}}$$
(9)

$$s_{i} = \frac{e^{z_{i}}}{e^{z_{i}} + \sum_{k \neq i} e^{z_{k}}}$$
(10)

$$\frac{s_{i}}{\partial z_{i}} = \frac{(e^{z_{i}} + \sum_{k \neq i} e^{z_{k}})e^{z_{i}} - e^{z_{i}}e^{z_{i}}}{(e^{z_{i}} + \sum_{k \neq i} e^{z_{k}})^{2}}$$
(11)

$$\frac{e^{z_{i}}}{e^{z_{i}} + \sum_{k \neq i} e^{z_{k}}} * \frac{e^{z_{i}} + \sum_{k \neq i} e^{z_{k}} - e^{z_{i}}}{e^{z_{i}} + \sum_{k \neq i} e^{z_{k}}}$$
(12)

$$s_{i}(1 - s_{i})$$
(13)

Neural Networks

Problems Hugg

Hugging Face Demo

Conclusion

Creating Or with Single Linear Threshold Neuron

$$f(x) = \begin{cases} 1 & w^T x + b \ge 0 \\ 0 & w^T x + b < 0 \end{cases}$$

Neural Networks

Problems Hugg

Hugging Face Demo

Conclusion

Creating Or with Single Linear Threshold Neuron

$$f(x) = \begin{cases} 1 & w^T x + b \ge 0 \\ 0 & w^T x + b < 0 \end{cases}$$

Introduction and Background $_{\bigcirc \bigcirc \bigcirc }$

Logistic Regression

Neural Networks

Problems Huggi

Hugging Face Demo

Conclusion

Creating And with Single Layer Threshold Neuron

$$f(x) = \begin{cases} 1 & w^T x + b \ge 0 \\ 0 & w^T x + b < 0 \end{cases}$$

Introduction and Background $_{\bigcirc \bigcirc \bigcirc }$

Logistic Regression

Neural Networks

Problems Huggi

Hugging Face Demo

Conclusion

Creating And with Single Layer Threshold Neuron

$$f(x) = \begin{cases} 1 & w^T x + b \ge 0 \\ 0 & w^T x + b < 0 \end{cases}$$

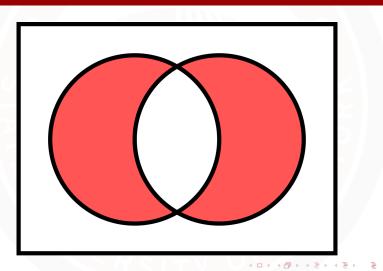
Logistic Regress 0000000 Neural Networks

Problems Hugg

Hugging Face Demo

Conclusion

Proving XOR is impossible with just a single layer threshold neuron



Problems Hugg

Hugging Face Demo

Conclusion

- Network structure:
 - One input x
 - Simple linear layer: $z = w \cdot x + b$
 - No activation function
 - Mean-squared Error: $L = \frac{1}{n}(\hat{y} y)^2$
- Backpropogation

Problems Hugg

Hugging Face Demo

Conclusion

- Network structure:
 - One input x
 - Simple linear layer: $z = w \cdot x + b$
 - No activation function
 - Mean-squared Error: $L = \frac{1}{n}(\hat{y} y)^2$
- Backpropogation
 - Compute gradient of loss with respect to \hat{y} : $\frac{\partial L}{\partial \hat{y}} = \frac{2(\hat{y}-y)}{n}$

Problems Hugg

Hugging Face Demo

Conclusion

- Network structure:
 - One input x
 - Simple linear layer: $z = w \cdot x + b$
 - No activation function
 - Mean-squared Error: $L = \frac{1}{n}(\hat{y} y)^2$
- Backpropogation
 - Compute gradient of loss with respect to \hat{y} : $\frac{\partial L}{\partial \hat{y}} = \frac{2(\hat{y}-y)}{n}$
 - Gradient with respect to z: $\frac{\partial L}{\partial z} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} = \frac{2(\hat{y} y)}{n}(1)$

Problems Hugg

Hugging Face Demo

Conclusion

- Network structure:
 - One input x
 - Simple linear layer: $z = w \cdot x + b$
 - No activation function
 - Mean-squared Error: $L = \frac{1}{n}(\hat{y} y)^2$
- Backpropogation
 - Compute gradient of loss with respect to \hat{y} : $\frac{\partial L}{\partial \hat{y}} = \frac{2(\hat{y}-y)}{n}$
 - Gradient with respect to z: $\frac{\partial L}{\partial z} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} = \frac{2(\hat{y} y)}{n} (1)$
 - Compute gradient with respect to weights:

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial w} = \frac{2(\hat{y} - y)}{n} (1)(x)$$

Problems Hugg

Hugging Face Demo

Conclusion

- Network structure:
 - One input x
 - Simple linear layer: $z = w \cdot x + b$
 - No activation function
 - Mean-squared Error: $L = \frac{1}{n}(\hat{y} y)^2$
- Backpropogation
 - Compute gradient of loss with respect to \hat{y} : $\frac{\partial L}{\partial \hat{y}} = \frac{2(\hat{y}-y)}{n}$
 - Gradient with respect to z: $\frac{\partial L}{\partial z} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} = \frac{2(\hat{y}-y)}{n}(1)$
 - Compute gradient with respect to weights: $\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial w} = \frac{2(\hat{y} - y)}{n} (1)(x)$
 - Compute gradient with respect to bias: $\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial b} = \frac{2(\hat{y}-y)}{n}(1)(1)$

Problems Huggii

Hugging Face Demo Conclusion

Backpropogation Example: Two-layer Neural Network

- Network structure:
 - Two inputs x_1, x_2
 - Hidden layer with two neurons: $z_1 = w_{11} \cdot x_1 + w_{21} \cdot x_2 + b_1$,
 - $z_2 = w_{12} \cdot x_1 + w_{22} \cdot x_2 + b_2$
 - Output layer with one neuron: $z_3 = w_{13} \cdot a_1 + w_{23} \cdot a_2 + b_3$
 - Sigmoid activation function: $\frac{1}{1+e^{-z_i}}$
 - Binary cross-entropy loss: $L = -(ylog(\hat{y}) + (1 y)(log(1 \hat{y})))$
- Backpropogation

Problems Huggin

Hugging Face Demo Conclusion

Backpropogation Example: Two-layer Neural Network

- Network structure:
 - Two inputs x_1, x_2
 - Hidden layer with two neurons: $z_1 = w_{11} \cdot x_1 + w_{21} \cdot x_2 + b_1$,
 - $z_2 = w_{12} \cdot x_1 + w_{22} \cdot x_2 + b_2$
 - Output layer with one neuron: $z_3 = w_{13} \cdot a_1 + w_{23} \cdot a_2 + b_3$
 - Sigmoid activation function: $\frac{1}{1+e^{-z_i}}$
 - Binary cross-entropy loss: $L = -(ylog(\hat{y}) + (1 y)(log(1 \hat{y})))$
- Backpropogation
 - Compute gradient of loss with respect to \hat{y} : $\frac{\partial L}{\partial \hat{v}} = -\frac{y}{\hat{v}} + \frac{1-y}{1-\hat{v}}$

Problems 0000000

Hugging Face Demo Conclusion

Backpropogation Example: Two-layer Neural Network

Network structure:

- Two inputs x_1, x_2
- Hidden layer with two neurons: $z_1 = w_{11} \cdot x_1 + w_{21} \cdot x_2 + b_1$, $z_2 = w_{12} \cdot x_1 + w_{22} \cdot x_2 + b_2$
- Output layer with one neuron: $z_3 = w_{13} \cdot a_1 + w_{23} \cdot a_2 + b_3$
- Sigmoid activation function: $\frac{1}{1+e^{-z_i}}$
- Binary cross-entropy loss: $L = -(y \log(\hat{y}) + (1 y)(\log(1 \hat{y})))$

Backpropogation •

- Compute gradient of loss with respect to \hat{y} : $\frac{\partial L}{\partial \hat{v}} = -\frac{y}{\hat{v}} + \frac{1-y}{1-\hat{v}}$
- Gradient with respect to z₃: $\frac{\partial L}{\partial z_2} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_2} = \hat{y}(1-\hat{y})(-\frac{y}{\hat{y}}+\frac{1-y}{1-\hat{y}}) = -(1-\hat{y})y + (1-y)\hat{y}$

・ 同 ト ・ 三 ト ・ 三 ト

Backpropogation Example: Two-layer Neural Network

Network structure:

- Two inputs x_1, x_2
- Hidden layer with two neurons: $z_1 = w_{11} \cdot x_1 + w_{21} \cdot x_2 + b_1$,
 - $z_2 = w_{12} \cdot x_1 + w_{22} \cdot x_2 + b_2$
- Output layer with one neuron: $z_3 = w_{13} \cdot a_1 + w_{23} \cdot a_2 + b_3$
- Sigmoid activation function: $\frac{1}{1+e^{-z_i}}$
- Binary cross-entropy loss: $L = -(ylog(\hat{y}) + (1 y)(log(1 \hat{y})))$

Backpropogation

- Compute gradient of loss with respect to \hat{y} : $\frac{\partial L}{\partial \hat{y}} = -\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}}$
- Gradient with respect to z₃:

$$rac{\partial L}{\partial z_3} = rac{\partial L}{\partial \hat{y}} rac{\partial \hat{y}}{\partial z_3} = \hat{y}(1-\hat{y})(-rac{y}{\hat{y}}+rac{1-y}{1-\hat{y}}) = -(1-\hat{y})y + (1-y)\hat{y}$$

• Compute gradient of z_3 with respect to weights w_{i3} :

$$\frac{\partial L}{\partial w_{i3}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial y}{\partial z_3} \frac{\partial z_3}{\partial w_{i3}} = (-(1-\hat{y})y + (1-y)\hat{y})a_i$$

Logistic Regression

Neural Networks

Problems Hugg

Hugging Face Demo

Conclusion

Backpropogation Example: Two-layer Neural Network

• Compute gradient of z_3 with respect to bias: $\frac{\partial L}{\partial b_{i3}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial b_3} = -(1-\hat{y})y + (1-y)\hat{y}$

Problems Hugg

Hugging Face Demo Conclusion

Backpropogation Example: Two-layer Neural Network

- Compute gradient of z_3 with respect to bias: $\frac{\partial L}{\partial b_{i3}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial b_3} = -(1-\hat{y})y + (1-y)\hat{y}$
- Compute gradient of z_3 with respect to activation a_1 : $\frac{\partial L}{\partial a_i} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial a_1} = (-(1-\hat{y})y + (1-y)\hat{y})w_{i3}$

Problems Hugg

Hugging Face Demo Conclusion

Backpropogation Example: Two-layer Neural Network

- Compute gradient of z_3 with respect to bias: $\frac{\partial L}{\partial b_{i3}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial b_3} = -(1-\hat{y})y + (1-y)\hat{y}$
- Compute gradient of z_3 with respect to activation a_1 : $\frac{\partial L}{\partial a_i} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial a_1} = (-(1-\hat{y})y + (1-y)\hat{y})w_{i3}$
- Compute gradient of activation a_i with respect to z_1 : $\frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial a_1} \frac{\partial a_1}{\partial z_1} = ((-(1-\hat{y})y + (1-y)\hat{y})w_{i3})(a_1(1-a_1)))$

Backpropogation Example: Two-layer Neural Network

- Compute gradient of z_3 with respect to bias: $\frac{\partial L}{\partial b_{i3}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial b_3} = -(1-\hat{y})y + (1-y)\hat{y}$
- Compute gradient of z_3 with respect to activation a_1 : $\frac{\partial L}{\partial a_i} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial a_1} = (-(1-\hat{y})y + (1-y)\hat{y})w_{i3}$
- Compute gradient of activation a_i with respect to z_1 : $\frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial a_1} \frac{\partial a_1}{\partial z_1} = ((-(1-\hat{y})y + (1-y)\hat{y})w_{i3})(a_1(1-a_1)))$
- Compute gradient of activation z_i with respect to weight w_{11} : $\frac{\partial L}{\partial w_{11}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_1}{\partial z_1} \frac{\partial z_1}{\partial z_1} \frac{\partial z_1}{\partial w_{11}} = ((-(1-\hat{y})y + (1-y)\hat{y})w_{i3})(a_1(1-a_1))(x_1))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Backpropogation Example: Two-layer Neural Network

- Compute gradient of z_3 with respect to bias: $\frac{\partial L}{\partial b_{i3}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial b_3} = -(1-\hat{y})y + (1-y)\hat{y}$
- Compute gradient of z_3 with respect to activation a_1 : $\frac{\partial L}{\partial a_i} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial a_1} = (-(1-\hat{y})y + (1-y)\hat{y})w_{i3}$
- Compute gradient of activation a_i with respect to z_1 : $\frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_3}{\partial a_1} \frac{\partial a_1}{\partial z_1} = ((-(1-\hat{y})y + (1-y)\hat{y})w_{i3})(a_1(1-a_1))$
- Compute gradient of activation z_i with respect to weight w_{11} : $\frac{\partial L}{\partial w_{11}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_1}{\partial a_1} \frac{\partial a_1}{\partial z_1} \frac{\partial z_1}{\partial w_{11}} = ((-(1-\hat{y})y + (1-y)\hat{y})w_{i3})(a_1(1-a_1))(x_1)$
- Compute gradient of activation z_i with respect to bias $b_1: \frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \frac{\partial z_1}{\partial a_1} \frac{\partial z_1}{\partial z_1} \frac{\partial z_1}{\partial b_1} = ((-(1-\hat{y})y + (1-y)\hat{y})w_{i3})(a_1(1-a_1)))$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Logistic Regression

Neural Networks

Problems

Hugging Face Demo ●○ Conclusion

What Hugging Face is

- Hugging Face is an online repository of trained models that can be used out of the box or retrained
- Hugging Face substantially reduces the time to begin working with complex pre-trained models

Introduction and Background

Logistic Regressi

Neural Networks

Problems

Hugging Face Demo ○● Conclusion

Quick Tour

HuggingFaceTour

Data Science and Machine Learning

Golden, Maliar 32 / 32

Logistic Regressi

Neural Networks

Problems

Hugging Face Demo

Conclusion ●○

Thank You So Much!

Data Science and Machine Learning

Golden, Maliar 32 / 32

< P

Introduction and Background

Logistic Regressi

Neural Networks

Problems H

Hugging Face Demo

Conclusion ○●

List of References

æ